Rudnick and Soundararajan's theorem for function fields

نویسنده

  • Julio Andrade
چکیده

In this paper we prove a function field version of a theorem by Rudnick and Soundararajan about lower bounds for moments of quadratic Dirichlet L–functions. We establish lower bounds for the moments of quadratic Dirichlet L–functions associated to hyperelliptic curves of genus g over a fixed finite field Fq in the large genus g limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nodal sets of toral eigenfunctions

We study the nodal sets of eigenfunctions of the Laplacian on the standard d-dimensional flat torus. The question we address is: Can a fixed hypersurface lie on the nodal sets of eigenfunctions with arbitrarily large eigenvalue? In dimension two, we show that this happens only for segments of closed geodesics. In higher dimensions, certain cylindrical sets do lie on nodal sets corresponding to ...

متن کامل

Sato-Tate Equidistribution of Kurlberg-Rudnick Sums-1 Sato-Tate Equidistribution of Kurlberg-Rudnick Sums

We prove equidistribution results for certain exponential sums that arise in the work of Kurlberg-Rudnick on "cat maps". We show (Theorems 1 and 2) that suitable normalizations of these sums behave like the traces of random matrices in SU(2). We also show that as a suitable parameter varies, the corresponding sums are statistically independent (Theorems 3 and 4). The main tools are Deligne's Eq...

متن کامل

بررسی فرایند نورد متقارن ورق های سه لایه با استفاده از تابع جریان و تئوری حد بالا

In this paper, a mathematical model for symmetrical multi-layer sheet rolling, in which the layers are unbounded before rolling, by using the upper bound method and stream function theorem is proposed. Using this model, we can investigate the plastic deformation behavior of sheets at the roll gap during rolling. Effect of various rolling conditions such as initial and final thickness and flow s...

متن کامل

Zeros of Dirichlet L-functions over Function Fields

Random matrix theory has successfully modeled many systems in physics and mathematics, and often analysis in one area guides development in the other. Hughes and Rudnick computed 1-level density statistics for low-lying zeros of the family of primitive Dirichlet L-functions of fixed prime conductor Q, as Q→∞, and verified the unitary symmetry predicted by random matrix theory. We compute 1and 2...

متن کامل

2 6 Ja n 20 04 Common divisors of a n − 1 and b n − 1 over function fields

Ailon and Rudnick have shown that if a, b ∈ C[T ] are multiplicatively independent polynomials, then deg (

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2016